skip to main content


Search for: All records

Creators/Authors contains: "Fraser, Alexander D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting species survival in the face of climate change requires understanding the drivers that influence their distribution. Emperor penguins (Aptenodytes forsteri) incubate and rear chicks on landfast sea ice, whose extent, dynamics, and quality are expected to vary substantially due to climate change. Until recently, this species’ continent-wide observations were scarce, and knowledge on their distribution and habitat limited. Advances in satellite imagery now allow their observation and characterization of habitats across Antarctica at high resolution. Using circumpolar high-resolution satellite images, unique fast ice metrics, and geographic and biological factors, we identified diverse penguin habitats across the continent, with no significant difference between areas with penguins or not. There is a clear geographic partitioning of colonies with respect to their defining habitat characteristics, indicating possible behavioral plasticity among different metapopulations. This coincides with geographic structures found in previous genetic studies. Given projections of quasi-extinction for this species in 2100, this study provides essential information for conservation measures.

     
    more » « less
    Free, publicly-accessible full text available September 29, 2024
  2. null (Ed.)
    In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world's longest dataset of emperor penguin ( Aptenodytes forsteri ) breeding parameters, we studied the effects of fine-scale variability of LFI and weather conditions on this species' reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change. 
    more » « less
  3. Abstract. Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of -882±824 km2 yr−1 (-0.19±0.18 % yr−1) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of +1198±359 km2 yr−1 (+1.10±0.35 % yr−1). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of -1206±277 km2 yr−1 (-1.78±0.41 % yr−1) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies. 
    more » « less
  4. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome. 
    more » « less
  5. Abstract

    Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.

    Significance Statement

    Using our diverse collective expertise, we explored the impacts from the March 2022 heat wave and atmospheric river across East Antarctica. One key takeaway is that the Antarctic cryosphere is highly sensitive to meteorological extremes originating from the midlatitudes and subtropics. Despite the large positive temperature anomalies driven from strong downward longwave radiation, this event led to huge amounts of snowfall across the Antarctic interior desert. The isotopes in this snow of warm airmass origin will likely be detectable in future ice cores and potentially distort past climate reconstructions. Even measurements of space activity were affected. Also, the swells generated from this storm helped to trigger the final collapse of an already critically unstable Conger Ice Shelf while further degrading sea ice coverage.

     
    more » « less
  6. Abstract

    Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of −9.4°C on 18 March at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/midlatitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heat wave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline, which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm-air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heat wave, an area of 3.3 million km2in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about 100 years, a closer recurrence of such an event is possible under future climate projections. In Part II we describe the various impacts this extreme event had on the East Antarctic cryosphere.

    Significance Statement

    In March 2022, a heat wave and atmospheric river caused some of the highest temperature anomalies ever observed globally and captured the attention of the Antarctic science community. Using our diverse collective expertise, we explored the causes of the event and have placed it within a historical climate context. One key takeaway is that Antarctic climate extremes are highly sensitive to perturbations in the midlatitudes and subtropics. This heat wave redefined our expectations of the Antarctic climate. Despite the rare chance of occurrence based on past climate, a future temperature extreme event of similar magnitude is possible, especially given anthropogenic climate change.

     
    more » « less
  7. Abstract This study presents the first analysis of benthic megafauna and habitats from the Sabrina Coast shelf, encompassing a proposed Marine Protected Area. Sea bed imagery indicated an abundant benthic fauna compared to other parts of the Antarctic shelf, dominated by brittle stars, polychaete tubeworms, and a range of other sessile and mobile taxa. The distribution of taxa was related (ρ=0.592, P <0.001) to variations in water depth, latitude, substrate type and phytodetritus. High phytodetritus cover was associated with muddy/sandy sediments and abundant holothurians and amphipods, while harder substrates hosted abundant brachiopods, hard bryozoans, polychaete tubeworms, massive and encrusting sponges, and sea whips. Brittle stars, irregular urchins and anemones were ubiquitous. Variations in substrate largely reflected the distribution of dropstones, creating fine-scale habitat heterogeneity. Several taxa were found only on hard substrates, and their broad regional distribution indicated that the density of dropstones was sufficient for most sessile invertebrates to disperse across the region. The hexactinellid sponge Anoxycalyx joubini and branching hydrocorals exhibited a more restricted distribution, probably related to water depth and limited dispersal capability, respectively. Dropstones were associated with significant increases in taxa diversity, abundance and biological cover, enhancing the overall diversity and biomass of this ecosystem. 
    more » « less